Cardiac Resynchronization Therapy
Part 2—Issues During and After Device Implantation and Unresolved Questions

Encouraged by the clinical success of cardiac resynchronization therapy (CRT), the implantation rate has increased exponentially, although several limitations and unresolved issues of CRT have been identified. This review concerns issues that are encountered during implantation of CRT devices, including the role of electroanatomical mapping, whether CRT implantation should be accompanied by simultaneous atrioventricular nodal ablation in patients with atrial fibrillation, procedural complications, and when to consider surgical left ventricular lead positioning. Furthermore, (echocardiographic) CRT optimization and assessment of CRT benefits after implantation are highlighted. Also, controversial issues such as the potential value of CRT in patients with mild heart failure or narrow QRS complex are addressed. Finally, open questions concerning when to combine CRT with implantable cardioverter-defibrillator therapy and the cost-effectiveness of CRT are discussed. (J Am Coll Cardiol 2005;46:2168–82) © 2005 by the American College of Cardiology Foundation.

From the *Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; †Johns Hopkins University, Baltimore, Maryland; ‡University of South Florida, Tampa, Florida; ¶University Klinikum Mannheim, Mannheim, Germany; ¶¶The Chinese University of Hong Kong, Hong Kong, China; §§Hopital cardiologique du Haut-Leveque, Pessac, France; #University of Pittsburgh, Pittsburgh, Pennsylvania; **Mayo Clinic, Rochester, Minnesota; ††Turku PET Center, University of Turku, Turku, Finland; †††Hôpital Pontchaillou, Rennes, France; #§§Karolinska University Hospital, Stockholm, Sweden; †¶¶Duke Clinical Research Institute, Durham, North Carolina; ‡¶¶King’s College Hospital, London, United Kingdom; ‡‡‡Hamnersmith Hospital, London, United Kingdom; and ‡‡‡‡Stadstische Kliniken Bielefeld, Bielefeld, Germany.

Dr. Abraham receives honoraria from GE, Guidant, Medtronic, and St. Jude and receives research support from Guidant; Dr. Barold received lecture fees from Medtronic; Dr. Breithardt has been a consultant for Medtronic and Guidant and has research affiliations with Medtronic, Guidant, and GE Vingmed; Dr. Hayes is on the advisory board of Guidant Inc. and has been a speaker for Guidant Inc., Medtronic Inc., St. Jude Medical, and ELA Medical, and has received royalties from Blackwell Futura; Dr. Gorcsan received research grant support from GE, Toshiba, Siemens, Medtronic, and St. Jude; Dr. Kass has been a consultant for Guidant Inc.; Dr. Mark has been a consultant and receives grants from Medtronic, Inc. Dr. Monaghan has received support from Philips, GE, Siemens, Guidant, Medtronic, and Accure pace; Dr. Schalij is on the advisory board of Guidant Inc. and has been a speaker for Guidant Inc., Medtronic, Inc. Dr. Schalij has been a consultant and receives grants from Medtronic, Inc. Dr. Stellbrink is a sponsored investigator for Guidant, Medtronic, St. Jude, and Biotronik and is also an advisor to Guidant and Biotronik; Dr. Nihoyannopoulos received research grants and consultant fees from Medtronic.

Dr. Abraham receives honoraria from GE, Guidant, Medtronic, and St. Jude and receives research support from Guidant; Dr. Barold received lecture fees from Medtronic; Dr. Breithardt has been a consultant for Medtronic and Guidant and has research affiliations with Medtronic, Guidant, and GE Vingmed; Dr. Hayes is on the advisory board of Guidant Inc. and has been a speaker for Guidant Inc., Medtronic Inc., St. Jude Medical, and ELA Medical, and has received royalties from Blackwell Futura; Dr. Gorcsan received research grant support from GE, Toshiba, Siemens, Medtronic, and St. Jude; Dr. Kass has been a consultant for Guidant Inc.; Dr. Mark has been a consultant and receives grants from Medtronic, Inc. Dr. Monaghan has received support from Philips, GE, Siemens, Guidant, Medtronic, and Accusphere; Dr. Schalij is on the advisory board of Guidant Inc. and has been a speaker for Guidant Inc., Medtronic, Inc. Dr. Stellbrink is a sponsored investigator for Guidant, Medtronic, St. Jude, and Biotronik and is also an advisor to Guidant and Biotronik; Dr. Nihoyannopoulos received research grants and consultant fees from Medtronic.

Manuscript received May 2, 2005; revised manuscript received September 19, 2005, accepted September 19, 2005.

ISSUES DURING CRT IMPLANTATION
Role of electroanatomical mapping in CRT. In normal individuals, electrical activation of both ventricles is preceded by depolarization of the His-Purkinje system resulting in rapid activation of both ventricles with only a short (LV) lead positioning. In addition, issues after CRT implantation are discussed, including (echocardiographic) CRT optimization and assessment of CRT benefits. Finally, many issues are still unclear in CRT, including the potential value in mild heart failure or in patients with narrow QRS complexes, when CRT should be accompanied by an ICD, and cost-effectiveness of the therapy; these issues are also addressed.

From the *Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; †Johns Hopkins University, Baltimore, Maryland; ‡University of South Florida, Tampa, Florida; ¶University Klinikum Mannheim, Mannheim, Germany; ¶¶The Chinese University of Hong Kong, Hong Kong, China; §§Hopital cardiologique du Haut-Leveque, Pessac, France; #University of Pittsburgh, Pittsburgh, Pennsylvania; **Mayo Clinic, Rochester, Minnesota; ††Turku PET Center, University of Turku, Turku, Finland; †††Hôpital Pontchaillou, Rennes, France; #§§Karolinska University Hospital, Stockholm, Sweden; †¶¶Duke Clinical Research Institute, Durham, North Carolina; ‡¶¶King’s College Hospital, London, United Kingdom; ‡‡‡Hamnersmith Hospital, London, United Kingdom; and ‡‡‡‡Stadstische Kliniken Bielefeld, Bielefeld, Germany.

Dr. Abraham receives honoraria from GE, Guidant, Medtronic, and St. Jude and receives research support from Guidant; Dr. Barold received lecture fees from Medtronic; Dr. Breithardt has been a consultant for Medtronic and Guidant and has research affiliations with Medtronic, Guidant, and GE Vingmed; Dr. Hayes is on the advisory board of Guidant Inc. and has been a speaker for Guidant Inc., Medtronic Inc., St. Jude Medical, and ELA Medical, and has received royalties from Blackwell Futura; Dr. Gorcsan received research grant support from GE, Toshiba, Siemens, Medtronic, and St. Jude; Dr. Kass has been a consultant for Guidant Inc.; Dr. Mark has been a consultant and receives grants from Medtronic, Inc. Dr. Monaghan has received support from Philips, GE, Siemens, Guidant, Medtronic, and Accusphere; Dr. Schalij is on the advisory board of Guidant Inc. and has been a speaker for Guidant Inc., Medtronic, Inc. Dr. Stellbrink is a sponsored investigator for Guidant, Medtronic, St. Jude, and Biotronik and is also an advisor to Guidant and Biotronik; Dr. Nihoyannopoulos received research grants and consultant fees from Medtronic.

Manuscript received May 2, 2005; revised manuscript received September 19, 2005, accepted September 19, 2005.
delay in activation between the earliest and the latest activated segments (2). In patients with left bundle branch block (LBBB), the total activation of the LV is prolonged with delayed activation and contraction of the lateral wall. However, even in the presence of LBBB, endocardial activation may be prolonged only minimally (2). In these patients, LBBB morphology could primarily be caused by delayed intramural activation (3). Consequently, it was hypothesized (3) that absence of these lines of block may preclude CRT benefit (Fig. 2). One of the proposed mechanisms underlying response to CRT in patients with heart failure and LBBB is pre-excitation of the most delayed LV segment, thereby reducing LV dyssynchrony and restoring coordinated contraction. It is reasonable to postulate that, in order to correct electrical dyssynchrony, LV pacing sites should be located lateral to the lines of conduction block (Fig. 1). Positioning of the pacing lead on the “wrong” site of the line of block may even result in an increase of dyssynchrony (the activation wave front has to complete a full U-turn in that case). Furthermore, because the basal part of the LV is activated last, it is tempting to speculate that the LV pacing lead should be positioned near the most basal segments. Currently, however, no studies are available to substantiate this hypothesis.

LV lead positioning: transvenous or surgical? Left ventricular lead placement is usually performed by a transvenous approach using the tributaries of the coronary sinus. Intubation of the coronary sinus with a dedicated guiding catheter facilitates LV lead implantation by providing support for advancing the pacing leads and allowing exchange of the angiography catheter and different pacing leads in difficult cases. Optimal projection for identifying the ostium is the left anterior oblique projection, but the right anterior oblique view may aid in defining the angulation of side-branch take-offs. A “conventional” stylet-guided pacing lead or an “over-the-wire” approach may be used. For the latter, a guidewire is first advanced into the desired branch then followed by the lead that has a central lumen. The “over-the-wire” technique is preferred for small tortuous veins, whereas conventional leads may provide superior stability in large veins with a relatively straight course; fixation is usually passive (anchors or pre-shaped curves). The feasibility of transvenous lead positioning is determined by anatomical and technical factors including venous anatomy, accessibility of the vein, pacing threshold, lead stability, and absence of phrenic nerve stimulation. With state-of-the-art lead technology, the ability to access specific coronary veins is not usually problematic. Venous anatomy can be evaluated during the procedure by retrograde venography but is also possible with non-invasive imaging using multislice computed tomography (5). The precise incidence of suitable veins for CRT is not known and may differ between patients with ischemic and non-ischemic cardiomyopathy. Still, Meisel et al. (6) have shown that 55% of patients have suitable posterior veins, whereas 99% have posterior or left marginal veins. Implant failures are more often due to enlargement of the right atrium and the accompanying distortion of the coronary sinus ostium leading to inability of conduction block, a “U” shaped activation pattern was often observed in patients with LBBB. The activation wave front turns around the LV apex and inferior wall in order to activate the lateral wall. Furthermore, as the activation sequence behind the line of block developed from the apical to the basal part of the lateral wall, the basal part is activated last. It has been hypothesized (3) that absence of these lines of block may preclude CRT benefit (Fig. 2). One of the proposed mechanisms underlying response to CRT in patients with heart failure and LBBB is pre-excitation of the most delayed LV segment, thereby reducing LV dyssynchrony and restoring coordinated contraction. It is reasonable to postulate that, in order to correct electrical dyssynchrony, LV pacing sites should be located lateral to the lines of conduction block (Fig. 1). Positioning of the pacing lead on the “wrong” site of the line of block may even result in an increase of dyssynchrony (the activation wave front has to complete a full U-turn in that case). Furthermore, because the basal part of the LV is activated last, it is tempting to speculate that the LV pacing lead should be positioned near the most basal segments. Currently, however, no studies are available to substantiate this hypothesis.

LV lead positioning: transvenous or surgical? Left ventricular lead placement is usually performed by a transvenous approach using the tributaries of the coronary sinus. Intubation of the coronary sinus with a dedicated guiding catheter facilitates LV lead implantation by providing support for advancing the pacing leads and allowing exchange of the angiography catheter and different pacing leads in difficult cases. Optimal projection for identifying the ostium is the left anterior oblique projection, but the right anterior oblique view may aid in defining the angulation of side-branch take-offs. A “conventional” stylet-guided pacing lead or an “over-the-wire” approach may be used. For the latter, a guidewire is first advanced into the desired branch then followed by the lead that has a central lumen. The “over-the-wire” technique is preferred for small tortuous veins, whereas conventional leads may provide superior stability in large veins with a relatively straight course; fixation is usually passive (anchors or pre-shaped curves). The feasibility of transvenous lead positioning is determined by anatomical and technical factors including venous anatomy, accessibility of the vein, pacing threshold, lead stability, and absence of phrenic nerve stimulation. With state-of-the-art lead technology, the ability to access specific coronary veins is not usually problematic. Venous anatomy can be evaluated during the procedure by retrograde venography but is also possible with non-invasive imaging using multislice computed tomography (5). The precise incidence of suitable veins for CRT is not known and may differ between patients with ischemic and non-ischemic cardiomyopathy. Still, Meisel et al. (6) have shown that 55% of patients have suitable posterior veins, whereas 99% have posterior or left marginal veins. Implant failures are more often due to enlargement of the right atrium and the accompanying distortion of the coronary sinus ostium leading to inability
to cannulate the ostium (up to 4%) or insufficient support by
the guiding catheter (6). A steerable electrophysiology
catheter can be used inside the guiding catheter to facilitate
coronary sinus intubation. A myocardial pacing threshold
<2 V is acceptable, but phrenic nerve stimulation should be
absent even at high output. Overall, implant success rates
>90% can be achieved in experienced centers.

The main procedural complications include lead dis-
lodgement, coronary sinus dissection, and phrenic nerve
stimulation. Lead dislodgement occurred in 6% of the
patients in the Cardiac Resynchronization-Heart Failure
(CARE-HF) trial, in 4% in the Multicenter InSync Random-
ized Clinical Evaluation (MIRACLE) trial, and in 12% in the
Multisite Simulation in Cardiomyopathies (MUSTIC)
trial (7–9). Coronary sinus dissection has been reported in about
0.4% to 4% of patients (10); healing is usually uncomplic-
cated, and vessel perforation is uncommon. In most in-
stances, LV lead implantation can safely be performed
several weeks after a dissection.

Phrenic nerve stimulation has been noted chronically in
1.6% to 12% of patients (11) and should therefore be
assessed during the implant procedure. Still, phrenic nerve
stimulation may occur de novo during follow-up due to
changes in body position. Adjustment of pacing output or
using other pacing configurations can often resolve this
situation, but occasionally lead repositioning is required.

Although lead positioning is limited by anatomical and
technical factors, the aim is to resynchronize the LV. With
current echocardiographic techniques, including TDI and
tissue synchronization imaging, it is possible to precisely
locate (before device implantation) the site of latest activa-
tion. In general, the site of latest activation is located in the
posterolateral region. In a relatively early study, investigators
demonstrated that benefit from CRT was significantly
greater when the lateral wall was paced as compared to the
anterior wall (12); TDI was not used to assess the site of
latest activation in this study. A later study confirmed with
TDI that the site of latest activation was located in the
inferior or posterolateral regions in 75% of patients under-
going CRT (13).

Integration of TDI to assess the site of latest activation
and visualization of venous anatomy will allow determina-
tion of the feasibility of a transvenous approach. When the
site of latest activation is not in the region of suitable veins,
surgical LV lead positioning may be considered, using limited left-lateral thoracotomy with direct epicardial lead placement (14). There is no data from large trials on surgical LV lead placement. Mair et al. (15) compared 16 patients undergoing surgical lead placement with 63 patients undergoing transvenous lead placement; the authors reported a lower incidence of procedural-related events with the surgical approach. Koos et al. (14) evaluated 81 patients undergoing CRT, with 25 having a surgical approach for LV lead positioning. A lower incidence of re-interventions was observed after surgical LV lead positioning; however, hospitalization was longer, and clinical benefit was smaller (lesser LV reverse remodeling, less increase in LV ejection fraction [EF] and peak O2) as compared to transvenous lead positioning. With surgery, the LV leads were more often positioned anteriorly (44% vs. 4.5% with the transvenous approach), and this position may not be ideal for LV resynchronization. More data on surgical LV lead implantation are needed.

CRT in chronic AF. Chronic AF occurs frequently in patients with end-stage heart failure. The prevalence of AF has been reported to increase in parallel to the severity of heart failure, with 10% to 15% of patients in New York Heart Association (NYHA) functional class II to III and up to 50% of patients in NYHA class IV having AF (16). Considering the high prevalence of AF in patients with severe heart failure, it is noteworthy that all major trials reported on patients with sinus rhythm, which may not be an adequate reflection of the heart failure population. If CRT is considered in patients with chronic AF, it is essential that rapid intrinsic AV nodal conduction does not inhibit resynchronization therapy. This is at times accomplished by performing an AV nodal ablation. At present, no controlled, randomized studies are available to support this hypothesis.

The limited available evidence suggests a beneficial effect of CRT in patients with chronic AF. Initial studies have focused on the acute effect of CRT on hemodynamic parameters in patients with AF. Several single-center studies with relatively small numbers of patients have been reported (17,18) and demonstrated acute hemodynamic improvement in patients with chronic AF receiving CRT. The available evidence on the long-term effects of CRT in patients with heart failure and chronic AF is also scarce. As illustrated in Table 1, the effects of CRT (with follow-up between 3 and 14 months) were evaluated in a total of 124
patients with AF, ranging from 15 to 59 patients per study. In the majority of these four studies, however, an improvement in NYHA functional class, 6-min walking distance, and quality-of-life score was shown, associated with improvement in LVEF. In single-center studies, improvement in additional echocardiographic parameters has been shown (19).

Two studies reported on the comparison of benefit from CRT in patients with AF as compared to patients with sinus rhythm (20,21), and demonstrated comparable benefit of CRT in both groups. On an individual basis, however, the clinical response rate was significantly higher in the patients with sinus rhythm as compared to AF (Fig. 3) (21). This difference may be (partially) due to the relatively low response rate in the patients with AF who did not undergo AV nodal ablation, as compared to those who underwent ablation (54% vs. 71%) (21).

To date, only one prospective, randomized, and controlled trial designed to assess the efficacy of CRT in AF patients with severe heart failure has been published (22). In the MUSTIC AF trial (22,23), 59 patients with end-stage heart failure and permanent AF, LVEF <35%, and wide (RV-paced) QRS complex were randomized for two periods

<table>
<thead>
<tr>
<th>Trials</th>
<th>Design</th>
<th>Patients (n)</th>
<th>Primary</th>
<th>Secondary</th>
<th>Results Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH-CHF (1)</td>
<td>Crossover</td>
<td>41</td>
<td>6MWT Peak VO₂</td>
<td>NYHA functional class QOL Hospitalizations</td>
<td>Improvement in 6MWT NYHA functional class QOL Less hospitalizations</td>
</tr>
<tr>
<td>MUSTIC-SR (2)</td>
<td>Crossover</td>
<td>58</td>
<td>6MWT</td>
<td>NYHA functional class QOL Peak VO₂ LV volumes MR Hospitalizations Total mortality</td>
<td>Improvement in 6MWT NYHA functional class QOL Peak VO₂ LV volumes MR Less hospitalizations</td>
</tr>
<tr>
<td>MIRACLE (3)</td>
<td>Parallel arms</td>
<td>453</td>
<td>6MWT NYHA functional class QOL Peak VO₂ LVEF LVEDD MR Clinical composite response</td>
<td>Improvement in 6MWT NYHA functional class QOL LVEF LVEDD MR</td>
<td></td>
</tr>
<tr>
<td>MIRACLE-ICD (4)</td>
<td>Parallel arms</td>
<td>555</td>
<td>6MWT NYHA functional class QOL Peak VO₂ LVEF LV volumes MR Clinical composite response</td>
<td>Improvement in NYHA functional class QOL</td>
<td></td>
</tr>
<tr>
<td>COMPANION (5)</td>
<td>Parallel arms</td>
<td>1,520</td>
<td>All-cause mortality or hospitalization</td>
<td>All-cause mortality and cardiac morbidity</td>
<td>Reduced all-cause mortality/hospitalization</td>
</tr>
<tr>
<td>CARE-HF (6)</td>
<td>Open label, randomized</td>
<td>814</td>
<td>All-cause mortality</td>
<td>NYHA functional class QOL LVEF LVESV Hospitalization for heart failure</td>
<td>Reduced mortality/morbidity Improvement in NYHA functional class QOL LVEF LVESV</td>
</tr>
<tr>
<td>PATH-CHF II (7)</td>
<td>Crossover (no pacing vs. LV pacing)</td>
<td>86</td>
<td>6MWT Peak VO₂</td>
<td>NYHA functional class QOL</td>
<td>Improvement in 6MWT QOL Peak VO₂</td>
</tr>
<tr>
<td>CONTAK-CD (8)</td>
<td>Crossover, parallel controlled</td>
<td>490</td>
<td>6MWT NYHA functional class QOL LVEF LV volumes Composite of mortality, hospitalizations, VT/VF</td>
<td>Improvement in 6MWT NYHA functional class QOL LVEF LV volumes</td>
<td></td>
</tr>
</tbody>
</table>

CARE-HF = Cardiac Resynchronization-Heart Failure; CONTAK-CD = CONTAK-Cardiac Defibrillator; COMPANION = Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure; CRT = cardiac resynchronization therapy; LV = left ventricular; LVEDD = left ventricular end-diastolic dimension; LVEF = left ventricular ejection fraction; LVESV = left ventricular end-systolic volume; MIRACLE = Multicenter InSync Randomized Clinical Evaluation; MIRACLE-ICD = MIRACLE Implantable Cardioverter Defibrillator trial; MR = mitral regurgitation; MUSTIC = Multisite Simulation in Cardiomyopathics; NYHA = New York Heart Association; PATH-CHF = Pacing Therapies in Congestive Heart Failure trial; QOL = quality-of-life score; VF = ventricular fibrillation; VO₂ = volume of oxygen; VT = ventricular tachycardia; 6-MWT = 6-min walk test.
undergoing CRT. However, no solid data exist on the incidence of spontaneous restoration of sinus rhythm in AF patients during CRT. Nevertheless, it is hypothesized that CRT results in reverse LV remodeling with a reduction of mitral regurgitation (MR), and that sinus rhythm may be restored spontaneously over time. A theoretical argument against AV nodal ablation is the hypothesis that CRT results in reverse LV remodeling with a reduction in hospitalization rate for heart failure. Linde et al. (23) subsequently demonstrated that benefit of CRT was sustained at 12 months.

From the limited data (Table 1), it appears that CRT is effective in patients with chronic AF, although larger studies are needed to confirm the findings. An important issue remains whether CRT in chronic AF patients should be accompanied with AV nodal ablation, and, although anecdotal data support this concept, more substantial data are needed. A theoretical argument against AV nodal ablation is the hypothesis that CRT results in reverse LV remodeling, with reduction of mitral regurgitation (MR), and that sinus rhythm may be restored spontaneously over time during CRT. However, no solid data exist on the incidence of spontaneous restoration of sinus rhythm in AF patients undergoing CRT.

ISSUES AFTER CRT IMPLANTATION

Optimization of AV and interventricular (VV) delays in CRT. Optimization of pacemaker settings may further enhance benefit from CRT. Both AV and VV delay can be optimized with contemporary CRT devices. The aim of AV delay optimization is to avoid LV systolic contraction taking place after suboptimal LV filling. In an early study (24) in 15 patients with heart failure and severely depressed LV function who underwent dual-chamber (atrial synchronized RV) pacing, AV delay optimization substantially increased cardiac output. The AV delay was optimized using Doppler echocardiography, and benefit was validated by invasive measurements including cardiac output. An optimal AV delay was programmed when the end of the “Doppler A-wave” (corresponding to left atrial contraction) occurred just before the onset of aortic systolic Doppler flow. This echocardiography-guided AV optimization appeared crucial in some heart failure patients who exhibited an increase in cardiac output by 50%. Unfortunately, the LV systolic activation sequence remained delayed and heterogeneous because pacing was performed via the RV apex, not using the highly differentiated Purkinje tissue. Cardiac resynchronization therapy now allows stimulation of both ventricles simultaneously, which reduces the aortic pre-ejection time interval (25,26) making re-optimization of the timing between the end of the “Doppler A-wave” and the onset of the aortic systolic flow necessary (Fig. 4). Auricchio et al. (27) have shown that quality of LV filling determined optimal LV ejection. The authors studied 27 patients and evaluated the acute effect of different AV delays on maximum LV pressure derivative and aortic pulse pressure, and demonstrated individual AV optimization yielded optimal improvements in hemodynamic measurements. These observations indicate that the AV delay needs to be evaluated on a patient basis instead using generalized settings. Still, evidence is needed on the beneficial effect of AV delay optimization during long-term follow-up.

The recent generation of CRT devices also allows for optimization of VV delay (28–31). Sogaard et al. (29) were the first to demonstrate additional benefit of sequential ventricular pacing over simultaneous CRT. The authors demonstrated an immediate reduction in LV dyssynchrony (assessed by tissue tracking) after onset of CRT (with simultaneous RV and LV pacing), resulting in an increased LVEF (from 22 ± 6% to 30 ± 5%, p < 0.01). Optimization of VV delay induced a further reduction in LV dyssynchrony with an additional increase in LVEF (to 34 ± 6%, p < 0.01). Other investigators (30) demonstrated a significant reduction in MR after CRT with simultaneous ventricular pacing, with a further reduction after VV optimization (Fig. 5). Thus, the benefit of sequential CRT with an individually optimized VV delay is related to an increased diastolic filling time with a reduction in LV dyssynchrony, leading to a better systolic performance with more synchronous motion of the mitral leaflets, thereby reducing MR.

Recent observations suggest that the optimal sequence of ventricular pacing varies substantially between patients. Porciani et al. (31) demonstrated that 50% of patients showed most benefit from LV pre-activation, whereas the other 50% had most benefit from RV pre-activation, illustrating the need for a patient-tailored approach to optimize pacemaker settings. The definition of an optimal VV delay has not yet been fully characterized and could reflect the VV interval that yields a maximal reduction in LV dyssynchrony and/or a maximal increase in LV systolic function. In daily practice, echocardiographic assessment of cardiac output using the LV outflow (aortic velocity-time integral) at different VV intervals may be the preferred approach to assess optimal VV settings. It should be emphasized, however, that long-term benefit of sequential over simultaneous ventricular pacing has not yet been demonstrated. In addition, the sequence of AV and VV optimization (i.e., which first and which second) is also not yet clear.
What benefit can be measured acutely and chronically after CRT? The effects of CRT can be divided into acute and chronic effects (Table 2). Studies in the acute setting have demonstrated that CRT abruptly enhances LV systolic function. In both experimental and clinical studies, this is manifest by a modest (6 mm Hg) rise in systolic pressure (27,32), increase in stroke volume (10% to 30%) (32), reduction in the LV end-systolic volume and, thus, LV end-systolic stress, and a more rapid rise of LV pressure (dP/dt max, between 15% to 35%) (27,32,33). There is also improved cardiac work at similar or lower oxygen consumption (34) so that chamber energetic efficiency is improved. Many of these changes can be observed within a single beat upon activating CRT, and are sustained in the short-term studies until CRT is abruptly terminated where they are rapidly reversed. The impact of CRT on diastolic function remains somewhat less clear. Acute studies have rarely shown significant effects on relaxation time constant, and there is no demonstrable effect on chamber stiffness (32).

Chronic CRT triggers similar changes in a number of hemodynamic parameters, but also results in reversal of LV dilation. Echocardiographic studies have shown ~10% declines in LV end-systolic and end-diastolic volumes, associated with an increase in LVEF (35–37).

Effect of CRT on MR. A significant reduction in MR has also been reported after CRT. Some patients exhibit immediate reduction in MR, whereas other patients show im-

Figure 4. Consequences of optimization of atrioventricular (AV) delay during biventricular pacing at stable heart rate. The QRS complex resulting from P1 is wide due to apical right ventricular pacing (165 ms). The aortic pre-ejection time interval (Pre-Ao1) is long; the aortic systolic phase is also long due to the wide QRS complex. The second QRS complex resulting from P2 is narrowed due to biventricular pacing leading to a shorter aortic pre-ejection time interval (Pre-Ao2) compared with Pre-Ao1. Consequently, time duration of the aortic systolic phase is reduced, and the E-wave corresponding to P3 occurs earlier (compared to P1 and P2) with a greater amplitude, indicating a better LV filling phase. Pre-Ao3 is even shorter than Pre-Ao2 due to the addition of an AV delay optimization during P3, resulting in a greater cardiac output (CO) during P3 compared with the one obtained during P2, in which biventricular pacing was delivered without AV delay optimization.

Figure 5. Changes in mitral regurgitation according to different pacing modes. (A) Spontaneous sinus rhythm showing severe mitral regurgitation. (B) Simultaneous biventricular pacing, showing significant reduction in mitral regurgitation. (C) Further reduction of mitral regurgitation after biventricular pacing with optimized interventricular delay (left ventricular pre-activation of 20 ms).
provement only late after CRT. This is related to the underlying pathophysiology of MR in end-stage heart failure. The LV dilation results in systolic retraction of the papillary muscles towards the apex, which inhibits complete leaflet coaptation in particular in the presence of a simultaneous decrease in the systolic closing force (38). In addition, wall motion abnormalities in the inferior/posterior regions can result in papillary muscle dysfunction with subsequent MR (39); LV dyssynchrony does also contribute to MR (40). A prolonged AV interval delays the onset of LV contraction and predisposes to incomplete mitral valve closure with the occurrence of pre-systolic (diastolic) MR (41). The resulting LV volume overload contributes further to the progressive deterioration in LV function, which in turn again increases MR (42). The pre-systolic component of MR can be effectively eliminated by pacing with a short (optimized) AV delay, while the CRT-related immediate reduction in the degree of systolic MR is associated with an acute hemodynamic improvement. Breithardt et al. (43) studied patients during brief re-programming of a CRT device and quantified the changes in the extent of MR with the occurrence of pre-systolic (diastolic) MR (41). The resulting LV volume overload contributes further to the progressive deterioration in LV function, which in turn again increases MR (42). The pre-systolic component of MR can be effectively eliminated by pacing with a short (optimized) AV delay, while the CRT-related immediate reduction in the degree of systolic MR is associated with an acute hemodynamic improvement. Breithardt et al. (43) studied patients during brief re-programming of a CRT device and quantified the changes in the extent of MR with echocardiography by the proximal isovelocity surface area method. The changes in MR severity were compared to the changes in LV systolic function (LV peak positive rate of pressure rise, LV +dP/dt_{max}, measured noninvasively by Doppler echocardiography. A linear correlation between the effective regurgitant orifice area and LV +dP/dt_{max} was observed, and it was concluded that an improved transmural pressure gradient (the closing force on the mitral leaflet) reduces MR severity by earlier and more effective mitral leaflet closure. An example of an acute reduction in MR after onset of CRT is demonstrated in Figure 6. Kanzaki et al. (44) confirmed these findings and added data on the role of papillary muscle resynchronization during CRT. The authors studied the deformation sequence of the papillary muscles by strain rate imaging and reported a direct relationship between the interpapillary muscle activation time delay and the improvement in the degree of MR by CRT. Thus, the immediate reduction in MR severity can be attributed to an improved coordination of ventricular contraction, including resynchronized papillary muscle activation, which results in improved systolic function and reduced mitral leaflet tethering forces. This effect can be observed in patients with ischemic and non-ischemic cardiomyopathy (36). Effective CRT immediately reduced the transmitral regurgitant volume at rest by about 30% to 40% on average (35,43,44). A further 10% to 20% improvement can be observed after some months of CRT and is probably related to the LV reverse remodeling (35).

Effect of CRT on quantitative blood flow and metabolism. Various studies have evaluated the effect of CRT on myocardial perfusion and metabolism. In order to assess small differences in a quantitative manner, positron emission tomography (PET) was used. In mild heart failure, LV efficiency of forward work is reduced, whereas RV oxidative metabolism is increased (probably due to an increased pressure load) (45). Resting perfusion may be normal, but the perfusion reserve is typically reduced. With more severe heart failure, LV oxidative metabolism becomes also compromised (46). In addition to the effects of heart failure per se, commonly coexisting LBBB leads to striking regional heterogeneity in perfusion and oxidative metabolism. In particular, perfusion and metabolism are reduced in the VV septum and increased in the lateral wall. The various PET studies that have evaluated the effect of CRT on myocardial blood flow and metabolism are summarized in Table 3. It should be noted that the total number of patients (n = 99) studied with PET is still limited, and the number of patients per study is also small (ranging from 6 to 14) (47–55). The available evidence indicates that CRT does not increase resting myocardial blood flow (Table 3, Fig. 7). The evidence on flow reserve is minimal. Knaapen et al. (54) studied 14 patients with PET and O15-labeled water and demonstrated a significant increase in flow reserve after CRT; conversely, Sundell et al. (50) also studied 10 patients with PET and O15-labeled water and demonstrated no change in flow reserve. Clearly, more information is needed on this topic.

Myocardial glucose utilization was evaluated in two studies, demonstrating that glucose uptake in the VV septum increased significantly after CRT (47,53).

In addition, three studies evaluated LV oxidative metabolism using PET and C11 acetate before and after CRT (48,50,51). These studies uniformly demonstrated no change in global LV oxidative metabolism, although an improvement in systolic LV function was demonstrated. The studies were also consistent in demonstrating increased myocardial efficiency, indicating improved oxygen cost of forward work by CRT (Table 3, Fig. 8). These studies confirm the earlier work by Nelson et al. (34) who demonstrated in an invasive setting that CRT improved systolic function with a reduction in energy cost. The PET studies also showed that oxidative metabolism became more homogeneous throughout the LV. Similar to glucose utilization, CRT appears to enhance oxidative metabolism in the VV septum with a simultaneous reduction in the lateral wall. This observation suggests a more balanced wall stress and energy requirements during CRT.
UNRESOLVED ISSUES IN CRT

CRT in NYHA class II heart failure. It has been hypothesized that patients with mild heart failure (i.e., NYHA functional class II) may also benefit from CRT, not so much as a therapy for heart failure, but rather to prevent development of heart failure. Thus far, one double-blind, parallel-controlled study focused on the effects of CRT in patients with NYHA functional class II heart failure and a classic indication for an implantable cardioverter-defibrillator (ICD) (56). These patients did not improve (but also did not worsen) in quality-of-life score and exercise tolerance, but significant reverse LV remodeling was observed. Another CRT study suggested improvement in clinical parameters in NYHA functional class II heart failure patients (57). To further substantiate these findings, controlled studies are needed. The REsynchronization rEVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) trial is an ongoing prospective, randomized, double-blind parallel study, designed to assess whether CRT combined with optimized medical therapy can attenuate progression of heart failure over at least 12 months, as compared to optimized medical treatment alone. Approximately 500 patients with either asymptomatic LV dysfunction or mild (NYHA functional class II) heart failure, QRS duration ≥120 ms, LVEF ≤40%, and LV end-diastolic diameter ≥55 mm will be included and followed-up for five years. The primary end point is the clinical composite end point, with LV end-systolic volume index as the first-order secondary end point.

CRT in narrow QRS complex. The value of CRT in heart failure patients with narrow QRS complex has not been resolved. Assuming that LV dyssynchrony is the main determinant of response to CRT, these patients need to be screened with advanced echocardiographic techniques (58). Two studies evaluated the incidence of LV dyssynchrony in patients with narrow QRS complex (59,60). Yu et al. (59) evaluated 67 patients with narrow QRS complex (≤120 ms, average 99 ± 11 ms) and heart failure with TDI and demonstrated LV dyssynchrony in 43% of patients. An example of a patient with LV dyssynchrony is presented in Figure 9. Bleeker et al. (60) showed a somewhat lower incidence (27%) of LV dyssynchrony (Fig. 10), which may have been related to patient characteristics or to a slightly different analysis of data and definition of LV dyssynchrony. Thus far, two small studies have shown actual benefit from CRT in patients with severe heart failure, depressed LVEF, and narrow QRS complex with LV dyssynchrony on echocardiography (61,62). In a study of 14 patients with QRS duration ≤120 ms, an improvement in NYHA functional class, 6-min walking distance and LVEF, with reverse LV remodeling were noted after six months of CRT (61). Moreover, it was demonstrated that the magnitude of
Improvement in clinical parameters after CRT was similar in a comparable group of patients with wide QRS complex. Should CRT be combined with ICD back-up? Heart failure has a poor prognosis with a five-year mortality of approximately 50% (63); cardiac mortality is high, and mode of death appears related to severity of heart failure. Patients with severe heart failure die more frequently of worsening heart failure, and patients with mild-to-moderate heart failure have a higher incidence of sudden death. Still, in absolute numbers, the sudden death rate is high even in patients with NYHA functional class III or IV heart failure (59% and 33% of all deaths, respectively) (63). Improving survival in these patients should focus on treatment of heart failure and prevention of sudden death; CRT has been demonstrated in large trials to improve heart failure symp-

Table 3. Summary of the Available Studies Using PET to Assess Effect of CRT on Myocardial Blood Flow and Metabolism

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Measured PET Parameters (Radionuclides)</th>
<th>Main Findings: CRT ON Versus OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neri et al. (47)</td>
<td>8</td>
<td>Resting MBF (N13 ammonia)</td>
<td>No effect on MBF</td>
</tr>
<tr>
<td></td>
<td>100% DCM</td>
<td>Glucose uptake (F18 deoxyglucose)</td>
<td>Septal glucose uptake increased</td>
</tr>
<tr>
<td>Ukkonen et al. (48)</td>
<td>8</td>
<td>MVO2 rest (C11 acetate)</td>
<td>LV and RV global MVO2 unchanged</td>
</tr>
<tr>
<td></td>
<td>25% DCM</td>
<td></td>
<td>Myocardial efficiency improved</td>
</tr>
<tr>
<td></td>
<td>LVEF 26 ± 9%</td>
<td></td>
<td>Septal to lateral wall ratio of MVO2 increased</td>
</tr>
<tr>
<td>Nielsen et al. (49)</td>
<td>14</td>
<td>Resting MBF (N13 ammonia)</td>
<td>No effect on global and regional MBF</td>
</tr>
<tr>
<td></td>
<td>36% DCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVEF 21 ± 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sundell et al. (50)</td>
<td>10</td>
<td>MBF at rest/during adenosine (O15 water)</td>
<td>No effect on global and regional MBF</td>
</tr>
<tr>
<td></td>
<td>100% DCM</td>
<td>MVO2 at rest/during dobutamine (C11 acetate)</td>
<td>No effect on global and regional MBF, LV global MVO2 unchanged</td>
</tr>
<tr>
<td></td>
<td>LVEF 32 ± 8%</td>
<td></td>
<td>Myocardial efficiency improved, Stress (dobutamine) MVO2 enhanced</td>
</tr>
<tr>
<td>Braunschweig et al. (51)</td>
<td>6</td>
<td>MBF at rest/during dobutamine (C11 acetate)</td>
<td>No effect on resting MBF/flow reserve</td>
</tr>
<tr>
<td></td>
<td>50% DCM</td>
<td>MVO2 at rest/during dobutamine (C11 acetate)</td>
<td>No effect on resting MVO2</td>
</tr>
<tr>
<td></td>
<td>LVEF 22 ± 9%</td>
<td></td>
<td>Stress (dobutamine) MVO2 enhanced</td>
</tr>
<tr>
<td>Nowak et al. (52)</td>
<td>14</td>
<td>Resting MBF (O15 water)</td>
<td>No effect on global and regional MBF</td>
</tr>
<tr>
<td></td>
<td>100% DCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVEF 23 ± 13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nowak et al. (53)</td>
<td>15</td>
<td>Glucose uptake (F18 deoxyglucose)</td>
<td>Septal glucose uptake increased</td>
</tr>
<tr>
<td></td>
<td>100% DCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVEF 22 ± 12%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knaapen et al. (54)</td>
<td>14</td>
<td>MBF at rest/during adenosine (O15 water)</td>
<td>No effect on global MBF but regional MBF became more homogeneous</td>
</tr>
<tr>
<td></td>
<td>57% DCM</td>
<td></td>
<td>Global hyperemic MBF increased</td>
</tr>
<tr>
<td></td>
<td>LVEF 25 ± 7%</td>
<td></td>
<td>Global flow reserve increased</td>
</tr>
<tr>
<td>Knuuti et al. (55)</td>
<td>10</td>
<td>RV MVO2 at rest/during dobutamine</td>
<td>No effect on resting MVO2 in RV</td>
</tr>
<tr>
<td></td>
<td>100% DCM</td>
<td>(O15 water)</td>
<td>Stress MVO2 enhanced in RV</td>
</tr>
<tr>
<td></td>
<td>LVEF 32 ± 8%</td>
<td></td>
<td>Subjects with high MVO2 in RV were functionally non-responders</td>
</tr>
</tbody>
</table>

Figure 7. Cardiac resynchronization therapy (CRT) appears to have no effect on basal (resting) blood flow (measured quantitatively by positron emission tomography using O15-labeled water) (left) or blood flow reserve (measured after adenosine vasodilation, right). (Data based on reference 50).

Figure 8. Cardiac resynchronization therapy (CRT) significantly increased basal myocardial efficiency (based on assessment by positron emission tomography using C11 acetate) (left), and a similar trend was observed during dobutamine stress (although not significant, right). (Data based on reference 50). Open bars = CRT on; solid bars = CRT off.
Figure 9. Tissue Doppler imaging in a patient with heart failure and narrow QRS complex, showing left ventricular (LV) dyssynchrony in multiple segments (top, middle, and bottom panels) as illustrated by the temporal difference in peak systolic velocity during the ejection phase (arrows). (Top) Tissue Doppler imaging velocity tracings obtained in the interventricular septum (yellow and light blue curves) and lateral wall (red and green curves). Earliest activation (peak systolic velocities, first arrow) is in the septum, and latest activation in the lateral wall (peak systolic velocities, second arrow). Thus, significant LV dyssynchrony is present between the septum and the lateral wall. (Middle) Tissue Doppler imaging velocity tracings obtained in the anterior wall (red and green curves) and inferior wall (yellow and light blue curves). Earliest activation (peak systolic velocities, first arrow) is in the anterior wall, and latest activation in the inferior wall (peak systolic velocities, second arrow). Thus, significant LV dyssynchrony exists between the anterior and inferior wall. (Bottom) Tissue Doppler imaging velocity tracings obtained in the anteroseptal wall (red and green curves) and posterior (yellow and light blue curves). Earliest activation (peak systolic velocities, first arrow) is in the anteroseptal wall, and latest activation in the posterior wall (peak systolic velocities, second arrow). Thus, significant LV dyssynchrony is present between the anteroseptal and posterior wall. AVC = aortic valve closure; AVO = aortic valve opening.
toms and LV systolic function. The effect was larger than that obtained with optimized medical therapy (7,8,10), and many patients improved from NYHA functional class III or IV to I or II after CRT (7,8,10). Moreover, results from the CARE-HF study demonstrated a reduced two-year mortality rate with CRT as compared to optimized medical therapy (18% vs. 25.1%) (7). Detailed analysis on the mode of death revealed that 47% of deaths in the medical-therapy group could be attributed to worsening heart failure as compared to 40% in the CRT group. Moreover, 32% of deaths in the medical-therapy group were attributed to sudden cardiac death as compared to 35% in the CRT group.

Implantable cardioverter defibrillator therapy is the optimal therapy to prevent sudden death; efficacy of ICD therapy is well established in both secondary and primary prevention trials (64–66). Currently, the Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) trial is the only randomized study evaluating whether CRT with or without ICD back-up would reduce all-cause mortality and hospitalization compared to optimized medical therapy (10). Patients were randomly assigned to optimized medical therapy (20%), CRT therapy (40%), and CRT + ICD back-up (40%). This trial was terminated after inclusion of 1,600 patients (originally projected 2,200 patients with a minimum follow-up of one year). The combined end point of all-cause mortality and hospitalization was 20% lower in both device groups compared to optimized medical therapy. No difference was noted with respect to the combined primary end point between the two device arms, and it was suggested that adding an ICD had no additional positive effects. However, a significant reduction (36%) in the risk of death was found in the CRT + ICD group (from 19% to 11%) compared to standard therapy whereas CRT resulted only in a non-significant risk of death reduction of 20%. Still, the trial was not designed to evaluate the individual benefits from CRT and CRT + ICD, and currently no data are available on this topic.

Considering that patients with mild-to-moderate heart failure die more often from sudden cardiac death, the improvement in NYHA functional class after CRT may be associated with a higher incidence of ventricular arrhythmias, and CRT should always be combined with ICD back-up. On the other hand, preliminary data suggest that the reverse LV remodeling was associated with a reduction in ventricular arrhythmias (that could be secondary to a reduction in wall stress) (67). Also, the inducibility of ventricular arrhythmias was less after CRT (68). Still, these results were obtained in a small number of patients, and studies are needed to provide more insight whether CRT should be combined with ICD back-up.

Economic considerations on CRT. There are two general questions that can be addressed by medical economic analyses: 1) what is the value of a new therapy or technology, and 2) can we afford it?

To facilitate comparisons among alternative medical therapies, one can express incremental health benefits either as additional life years (if the therapy in question increases life expectancy) or as additional quality adjusted life years (QALYs) (if quality of life is an important aspect of either the therapeutic benefit or the underlying disease state being treated). By general consensus, any therapy that can generate an additional life year for $50,000 or less is judged to be economically attractive, while therapies that generate additional life years for over $100,000 are judged economically unattractive. As can be easily seen, an expensive therapy such as CRT-ICD can be economically attractive as it produces a proportionally large improvement in health benefits. In most cases, the magnitude of health benefits produced rather than the price of the therapy is the primary determinant of whether the therapy is economically attractive. Thus, economic value analysis should focus much attention on careful definition of what are the incremental health benefits of a particular therapy, along with determining the long-term net cost.

The second economic question, that of affordability, stands apart from the value question. A new therapy may be
very economically attractive (that is, a very efficient way to increase health benefits with extra health care dollars), but still be out of reach for a country or health care system because there are not the extra health care dollars to spend.

Relatively little data exist on the economics of CRT. It is generally appreciated that the devices are expensive, with a typical U.S. cost for a CRT-ICD device around $30,000. As previously noted, the economic questions that need to be answered about these devices are: what extra health benefits (expressed in terms of QALYs) does CRT produce, and what are its long-term incremental costs, taking into consideration such downstream issues as device replacements, lead and other complications, as well as heart failure hospitalizations and emergency department visits prevented.

On the health benefits side, CRT has been reported to improve functional capacity (quality of life) and survival (7). On the cost side, there are reasonable data that CRT reduces heart failure hospitalizations. In the COMPANION study (10), CRT + ICD and CRT therapy were both associated with a 20% reduction in follow-up hospitalization (representing about $7,700) relative to medical therapy alone. In the COMPANION trial, CRT + ICD therapy added 0.5 life years during the course of follow-up relative to medical therapy alone. The cost effectiveness ratio for CRT-ICD therapy was $37,000 per life year saved, which is an economically attractive result.

As discussed in Part 1 of this review (1), better identification of responders to CRT should further improve cost-effectiveness of the therapy.

Conclusions. Cardiac resynchronization therapy has significantly contributed to the treatment of patients with severe heart failure. To further optimize individual benefit from CRT, identification of potential responders is needed. Echocardiography is the technique of choice to identify responders before implantation (1). During implantation, electroanatomical mapping can be used to identify the site of latest activation in order to optimize LV lead positioning. Most patients will have suitable venous anatomy for LV lead positioning; however, in the in the absence of suitable veins in the target region, minimally invasive surgical implantation should be considered. In patients with AF, AV nodal ablation during pacemaker implantation should be considered, to further optimize response to CRT. Optimization of pacemaker settings after CRT using echocardiography is important; optimization of AV and VV delays has been demonstrated to further improve benefit from CRT.

The response to CRT extends from immediate benefit (improvement of hemodynamic parameters, MR) to long-term benefit (improvement in clinical parameters, systolic LV function, reverse LV remodelling, and further reduction in MR). In addition, PET studies have shown that cardiac efficiency is improved after CRT; blood flow does not improve after CRT.

Several issues in CRT need further study. These include: the benefit from CRT in mild-to-moderate heart failure, the benefit from CRT in patients with narrow QRS complex, and whether ICD back-up is always needed. More research in these fields is needed. Finally, economic considerations are important, and cost-effectiveness of CRT needs further study.

References

failure, chronic atrial fibrillation and atrioventricular nodal block.

28. Van Gelder BM, Bracke FA, Meijer A, Lakerveld LJ, Pijl NH. Effect of optimizing the VV interval on left ventricular contractility in cardiac resynchronization therapy.
Am J Cardiol 2004;93:1500–3.

Eur J Heart Fail 2003;5:179–86.

34. Sundell J, Engblom E, Koistinen J, et al. The effects of cardiac resynchronization therapy on left ventricular function, myocardial energetics and metabolic reserve in patients with dilated cardiomyopathy and heart failure.

Eur J Heart Fail 2003;5:179–86.

42. Stajnbaher BA. Ischemic mitral regurgitation and ventricular remodeling.

J Am Coll Cardiol 2003;41:765–70.

44. Kanzaki H, Bazaz R, Schwartzman D, Doshi K, Sade LE, Gorcsan J, III. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping.

49. Nielsen JC, Botther M, Jensen HK, Nielsen TT, Pedersen AK, Mortensen PT. Regional myocardial perfusion during chronic biventricular pacing and after acute change of the pacing mode in patients with congestive heart failure and bundle branch block treated with an atrioventricular sequential biventricular pacemaker.
Eur J Heart Fail 2003;5:179–86.

J Am Coll Cardiol 2003;41:765–70.

Heart 2003;89:54–60.